skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Niu, Wuqi Amy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Depletion attractions drive bacterial adhesion on non-adhesive surfaces, enhance cell capture on adhesive surfaces, immobilize bacterial cells flat to a surface, and help align cells gentle flow. 
    more » « less
  2. null (Ed.)
    Because bacterial adhesion to surfaces is associated with infections and biofilm growth, it has been a longstanding goal to develop coatings that minimize biomolecular adsorption and eliminate bacteria adhesion. We demonstrate that, even on carefully-engineered non-bioadhesive coatings such as polyethylene glycol (PEG) layers that prevent biomolecule adsorption and cell adhesion, depletion interactions from non-adsorbing polymer in solution (such as 10 K PEG or 100 K PEO) can cause adhesion and retention of Escherichia coli cells, defeating the antifouling functionality of the coating. The cells are immobilized and remain viable on the timescale of the study, at least up to 45 minutes. When the polymer solution is replaced by buffer, cells rapidly escape from the surface, consistent with expectations for the reversibility of depletion attractions. The dissolved polymer additionally causes cells to aggregate in solution and aggregates rapidly dissociate to singlets upon tenfold dilution in buffer, also consistent with depletion. Hydrodynamic forces can substantially reduce the adhesion of aggregates on surfaces in conditions where single cells adhere via depletion. The findings reported here suggest that because bacteria thrive in polymer-rich environments both in vivo and in situ , depletion interactions may make it impossible to avoid bacterial retention on surfaces. 
    more » « less
  3. null (Ed.)